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Introduction

• Major open question: Connection between Canonical LQG and
Spin Foam models (SFM).

• The answer to this question will resolve many of the open questions
of both.

• We use an exactly soluble model of Loop Quantum Cosmology
(LQC) to probe this connection.

• We construct an expansion of LQC that is akin to the vertex
expansion of SFM.

• Using this expansion we gain insight into many open questions.



SFM→ LQG

• Goal: Find SFM model that shares as many of the features of LQG
as possible.

• EPRL: Connection to kinematics of LQG - Boundary states are
SU(2) spin networks.

• Extension of EPRL to arbitrary graphs [Kaminski, Kisielowski,
Lewandowski 09]

• Spin Foam models are defined on a fixed triangulation∆ :
Continuum Limit? Refinement of single triangulation, sum over all
triangulations, or...?

• Meaning of theory on one triangulation or a finite sum?

• Classical Limit→ cosS or eiS? Relation to time orientation?

• Meaning of the GFT coupling constantλ?



LQG→ SFM

• Goal: Derive SFM from group averaged inner product.

([sf ], [si]) =
∫

dα 〈sf | eiαM |si〉 or
∫

DN 〈sf | eiC(N) |si〉 (1)

• Original motivation for SFM - expansion of amplitude
〈sf | eiC(N) |si〉 expressed as sum over histories of spin networks
[Reisenberger, Rovelli 97]

• Construction of SFM for 2+1 gravity - group average then expand
[Noui, Perez 04]

• We seek a way to expand the physical inner product- allowing us to
compute it perturbatively.

• This is non-trivial - Perturbatively computing something that should
be giving distribution!



LQC as toy model

• We will study these issues using k=0 LQC with a massless scalar
field [Ashtekar, Pawlowski, Singh 06].

• While far from the full theory, LQC provides a physically
interesting yet technically simple arena to explore these issues.

• LQC has many of the key features of LQG (new representation,
constrained, etc.) and shares many of its conceptual difficulties
(problem of dynamics).

• This model isexactly soluble[Ashtekar, Corichi, Singh 08]
allowing us to perform precise calculations.The calculations are not
formal - they rely on just one assumption.



Expansion of LQC

• Want the ’transition amplitude’ between basis vectors|ν, φ〉 in Hkin

which are the LQC analogs of spin networks that are used to specify
the boundary states in SFMs

〈ν ′, φ′ | ν, φ〉 = δν′ν δ(φ′, φ) . (2)

• Given by the group averaged inner product between the physical
states generated from the basis vectors

([νf , φf ], [νi, φi]) = 2
∫

dα 〈νf , φf | eiαC |pφ| |νi, φi〉 . (3)

• Where the constraint is written in terms ofΘ - a difference operator
acting on|ν〉

C = p2
φ − Θ (4)



• We first obtain a sum over histories expansion of the amplitude
below by closely following the standard Feynman construction for
the gravitational part.

A(νf , φf ; νi, φi;α) = 2〈νf , φf | eiαC |pφ| |νi, φi〉 (5)

• By rearranging the sum over histories in terms of those pathswhose
volume is constant nearly everywhere, changing value only M
times, the amplitude can be written as a sum over discrete histories

A(νf , φf ; νi, φi;α) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

∫

dpφ eiαp2
φ eipφ∆φ |pφ|A(νM, . . . , ν0;α)

(6)

• To get the ’transition amplitude’ we still need to carry out the group
averaging.

([νf , φf ], [νi, φi]) =

∫

dα A(νf , φf ; νi, φi;α) (7)



• We have a well-defined expansion if we can carry out the group
averaging integral for each term of the expansion seperately.

• Our assumption is that the integral over alpha commutes withthe
sum over M.

([νf , φf ], [νi, φi]) =

∫

dα

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

. . . =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

∫

dα . . .

(8)

• Surprisingly theintegral converges for each discrete history.

A(νM, . . . , ν0;φf , φi) =
∫

dα
∫

dpφ eiαp2
φeipφ∆φ |pφ|A(νM, . . . , ν0;α)

(9)



SFM Vertex Expansion - Continuum Limit

• Arrived at an expansion akin to SFM vertex expansion

([νf , φf ], [νi, φi]) =

∞
∑

M=0

[

∑

νM−1,...,ν1
νm 6=νm+1

A(νM, . . . , ν0;φf , φi)
]

(10)

=
∑

M=0

A[∆M]

• Each term M can related to a triangulation∆M - with sums over
labellings of the dual triangulation.Each term then corresponds to
the SFM amplitude on a fixed triangulation

• The full group averaged inner product is then obtained by summing
over all such triangulations.

• This is a concrete realization of the expectation that the ’continuum
limit’ of SFM is given not by a refinement of a given triangulation
but by a sum over all triangulations.



GFT

• An alternative derivation makes contact with GFT.

• Formally split the constraint into a ’free’ and ’interaction’ term
introducing the coupling constantλ

C = (p2
φ − D) − λK (11)

• Using textbook interaction picture perturbation theory wearrive at
the same expansion (ifλ = 1).

([νf , φf ], [νi, φi]) =

∞
∑

M=0

λM
[

∑

νM−1,...,ν1
νm 6=νm+1

A(νM, . . . , ν0;φf , φi)
]

(12)

• If GFT is more fundamental what is the meaning of the coupling
constantλ and what happens as it flows under renormalization?



λ ∼ Λ

• What is the physical meaning ofλ 6= 1?

• Consider k=0 FRW with a cosmological constantΛ

• Same expansion can be carried out for this model.

• There is an isomorphism between the theory withλ 6= 1 andΛ and
the theory withλ = 1 andΛ̃ where

Λ̃ =
Λ

λ
+

3
2γ2ℓ2

oλ
(λ − 1). (13)

• Takingλ 6= 1 then corresponds to a shift in the value of the
cosmological constant

• If we takeΛ̃ = 0 we find that takingλ 6= 1 is equivalent to changing
the cosmological constant

Λ =
3

2γ2ℓ2
o

(1− λ) (14)



Matter is Good

• The addition of matter can lead to great simplifications.

• We are already familiar with this from LQC where the scalar field
plays the role of a clock - making it easier to extract physicsfrom
the model.

• Here the scalar field makes each term of the expansion finite.

• Without the scalar field integrals over the parameter alpha are often
divergent or are distributions for each path(example Bianchi I)

A[∆M] =
∑

νM−1,...,ν1
νm 6=νm+1

∫

dα

∫

dpφ eiαp2
φ eipφ∆φ |pφ|A(νM, . . . , ν0;α)

(15)

• Without matter it is necessary to regulate the group averaging
procedure to obtain a well defined expansion. [Rovelli, Vidotto ’10
AH, Rovelli, Vidotto, Wilson-Ewing wip]
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Semiclassical behavior and time orientation

• Relation between requiring positive frequency, semiclassical
behavioreiS or cosS, and time orientation.

• If we restrict to positive frequency (pφ > 0) then the group averaged
inner product is in general complex and semiclassically dominated
by eiS.

• If we reconstruct the classical metric from phase space trajectories
there is a redundancy - the same geometries are contained in each
part the phase space (pφ > 0 andpφ < 0) - but with different time
orientations.

• Summing over both positive and negative frequency is the same
then as summing over both time orientations and leads to cosS in
the semiclassical limit.

• Realization of idea that we need to restrict to sums over a single
time orientation.



Multiple Expansions

• There actually existtwo distinct expansions.

• If one first carries out the group averaging procedure and then
carries out the vertex expansion we arrive at a distinct expansion.

• While the two converge to the same result - term by term they look
very different.

• This leads to an observation: In attempting to construct a SFM from
LQG we may arrive at an expansion that looks quite different but
actually gives the same physics.

• We may thus need to work carefully on both ends to ensure that the
two match up!



Conclusions

• We have obtained a well defined Spin Foam like expansion of LQC
- with one assumption.

• Gives insight into many open questions of both LQC, SFM, and the
connection between them.

• Indicates that the continuum limit is given by a sum over all
triangulations.

• The group field theory parameter may be physically related tothe
cosmological constant.

• Matter while not essential provides many technical simplifications.

• The reality of the physical inner product and obtaining cosS
semiclassically can be traced to summing over both time
orientations.

• There are multiple expansions that look very different termby term
→ may be non-trivial to compare construction from LQG to SFM.


